

 Navigation

 	
 index

 	
 next |

 	Praekelt Ways of Working 1 documentation

Welcome to Praekelt Ways of Working’s documentation!

Hey, hopefully you’re here because you’re about to embark on a
project with us.

Here are some bits & pieces of documentation to help you get up to speed
with our ways of working, the tools we use, processes follow and the
things we would be expecting from you when doing projects.

If anything is unclear or plain wrong please do notify us or better yet,
submit a pull request to the repository!

Enjoy!

	Our Platforms
	Django

	Vumi

	Tools we use
	IRC

	Git

	Git Flow

	Hub

	Issues & Tickets

	Sentry

	Puppet

	Databases / data stores

	Django Applications

	Translations

	Graphite

	Our project process

	Our development process
	Example flow

	Production Deployments

	Things you need to know when starting a project

 Copyright 2013, Praekelt Foundation devs and individual contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Praekelt Ways of Working 1 documentation

Our Platforms

Praekelt uses two main platforms for the bulk of engineering work:

	Django

We use Django for websites, mobi sites, responsive sites, mobi HTML5 apps.

	Vumi

We use our Vumi platform for SMS, USSD and other messaging protocols.

Use of any other platform must be approved by our engineering management, and may
need to be hosted separately from our usual environments, so please get this
sorted out prior to commencing development on a project.

Django

You should use the latest stable release of Django unless otherwise specified.

We deploy Django in the following stack:

	Ubuntu Server (current LTS release)

	haproxy for load balancing where appropriate

	nginx

	gunicorn

	supervisord

	postgresql

For development, you can simplify this, and for QA we won’t bother about haproxy
but the rest of the stack will be required for QA so we recommend you keep your
dev environment as close to this as you can.

Notes:

	We manage hostnames in nginx, because there may be multiple QA and live hostnames
so don’t use Django’s ALLOWED_HOSTS.

Vumi

Vumi [http://vumi.org/] is a scalable messaging engine which we use for SMS, USSD and other messaging
protocols. Vumi Go is a hosted version of Vumi. Where Vumi gives you the tools to
build large scale messaging applications, Vumi Go provides you with a working
environment that is already integrated into numerous countries.

Apps can be written for Vumi Go, to power messaging campaigns or information systems.
These apps can be written in Javascript to run in a sandboxed environment (which is
our preferred option) or in Python.

See the Vumi Go [http://vumi-go.readthedocs.org/] documentation regarding writing apps, and there is documentation
for a state machine [http://vumi-jssandbox-toolkit.readthedocs.org/] for USSD as well.

 Copyright 2013, Praekelt Foundation devs and individual contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Praekelt Ways of Working 1 documentation

Tools we use

The following are tools we use on a regular basis and which we expect
you to either use or at least be very familiar with.

IRC

IRC is our team’s communication tool of choice. Join us in #prk-dev for general
developer support, or #vumi or #jmbo for development of those platforms,
on irc://irc.freenode.net/.

Various tools report into these channels and provide insight into what is
going on.

Git

We use Git. If you work with us, you will use Git for revision control,
and GitHub. There is no exception.

Provide us with your GitHub username and we will provide you with a
repository to work on. All repositories are to be hosted under the
Praekelt Organization [https://github.com/praekelt/] on GitHub.

Please read What’s in a Good Commit? [http://dev.solita.fi/2013/07/04/whats-in-a-good-commit.html]
for a good introduction to effective use of version control commits.

Git Flow

We use the Git Flow [https://github.com/nvie/gitflow] branching model as part of our development.
It’s a convenient way to manage your branches. You are not required to use
Git Flow but you are required to follow naming conventions it sets
with regard to branch-names and prefixes.

Have a read through the blog [http://nvie.com/posts/a-successful-git-branching-model/]
post describing the general idea and follow the installation instructions
in the repository to install it for your development platform of choice.

Unless you’ve explicitly been told otherwise, we require our team to review
your code before landing it in the develop branch.
Please provide pull requests for our review, the command line tool Hub [http://defunkt.io/hub/] (see below) is
a convenient way of turning GitHub issues into pull-requests.

The pull-request requirement still remains when using Jira [https://praekelt.atlassian.net/]. You can still
use Hub [http://defunkt.io/hub/] - however your Jira [https://praekelt.atlassian.net/] ticket’s status will not automatically change
when the feature branch lands, so you will need to update this yourself.

Please read Useful Github Patterns [http://blog.quickpeople.co.uk/2013/07/10/useful-github-patterns/]
to see ways of working with branches and pull requests that we like.

Hub

For projects with issues tracked in Github issues, We use Hub [http://defunkt.io/hub/] to interface
with GitHub [https://github.com/]‘s API. It allows one to turn issues on GitHub into
pull-requests. If that is done then once the pull-request is merged into
the main branch the issue is automatically closed.

Issues & Tickets

For project work we use Jira [https://praekelt.atlassian.net/]. Only our core open-source platforms maintain
their issues in the GitHub repository.

You will be given an account to use which will have access to the relevant
projects.

For development, if there is no ticket it does not exist.
Make sure the work you are doing has a ticket and is being tracked.
Stop working and protest immediately if people are treating your mailbox
as their ticketing system. We’ve tried that, it does not work.

If a Jira project has a workflow, you need to update your tickets
appropriately:
New -> Open -> Fixed in dev (when pushed to github) -> Deployed to QA

Our QA team will move the ticket to QA Passed, and our DevOps team will be
responsible for the production deployment before the ticket is resolved.

If a ticket is QA Failed then it’s back into your section of the workflow.

A ticket should represent a solid piece of work you intend to do.
Make an effort to keep the work you are trying to do in one ticket to no more
than 16 hours.

Any estimate you make for actual work done beyond 16 hours is assumed to be

	largely thumb-suck.

	going to be very hard to review.

Make an effort to keep it to 16 hours or break it up unto multiple tickets
each representing 16 hours of work.

Sentry

We have a dedicated Sentry [https://github.com/getsentry/sentry/] instance for our projects. You are expected to
configure your application to make use of this for error reporting.

You will be given access to your Sentry project and access tokens to will be
made available for you to configure your application’s client with.

Puppet

We try and automate as much as possible, this includes our hosting environment.
You will need to give us your SSH key so we can provision a machine for your
project. Generally you will be given access to a machine that is to be
used for QA [http://en.wikipedia.org/wiki/Quality_assurance]. Since our DevOps team do the production deployments, and you will
get access to production error reports via Sentry [https://github.com/getsentry/sentry/], you won’t get access to
production without a valid need for troubleshooting, and then it will be without
sudo access.

These machines are provisioned using Puppet. You will not get access to our
puppet repository. If you need specific software installed on your machine
that it was not provisioned with then please ask for it to be added.
Do not install it yourself without notifying us. This would break our
assumption that every machine can be provisioned from scratch with puppet.

If the machine you’ve been working on needs to be rebuilt and you’ve made
changes that are not in puppet then it’ll be provisioned without those changes.

Databases / data stores

We use the following services to store our data. Not all projects will use
all of them but generally a number of these will be involved.

	PostgreSQL [http://postgresql.org/]

	Riak [http://basho.com/riak/]

	Memcached [http://memcached.org/]

	Redis [http://redis.io]

	Neo4J [http://neo4j.org]

These will be made available to you on a per project basis. Puppet ensures
that each of these are backed up.

Django Applications

For Django applications, some applications are mandatory:

	Sentry [https://github.com/getsentry/sentry/] for application reporting.

	South [http://south.aeracode.org/] for managing database schema changes.

	Nose [https://nose.readthedocs.org/] for running tests.

	Haystack [http://haystacksearch.org/] for search.

	Memcached [http://memcached.org/] for caching.

Translations

We use Gettext or translations in shell scripts, applications and web pages.
Read more about Gettext along with some examples on Wikipedia:
http://en.wikipedia.org/wiki/Gettext

In Django, Gettext is used by default for translations, utilizing
ugettext_lazy for models.py and ugettext in other places. We like
{% trans %} and {% blocktrans %} tags and enforce these for our
open source products.

Graphite

We use Graphite [http://graphite.wikidot.com/] for the majority of our metric publishing for dashboards.
If appropriate, you will be given details for the Graphite [http://graphite.wikidot.com/] server and how
metrics are to be published to it.

 Copyright 2013, Praekelt Foundation devs and individual contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Praekelt Ways of Working 1 documentation

Our project process

The lifecycle of our projects is typically as follows:

	We produce a Scope of Work for a project, which might not have all the
technical details, but should be comprehensive enough to list all the
features so that you can quote on the project’s development.

	We work on a fixed cost basis for a fixed scope. If the scope changes,
we ask you for a costing for the delta or new work.

	The authorisation to proceed with work consists of a Purchase Order,
without which you cannot invoice us - so never start work without the PO.

	Development commences - see below. If you don’t have a github repo by this
point, please bug us until we provide it - please do not use your own
repo.

	We provide you with one QA server, with the same OS setup that we’ll use
in production - for all the projects you do for us, unless a project has
special needs which justify its own QA server. Please bug us for a
QA URL for this project to be pointed to your QA server. It must be on
our domain for client UAT.
Please note that QA may need sample or real data to be populated. Often,
the QA data gets migrated to the production site when finally deploying
that, so please ensure that dummy data can be cleaned up, and use
CMS credentials on QA that are suitable for production.

	You are responsible for deploying your code to this QA server, so that you
can support the fixing of bugs found during our QA testing. You should
always deploy to QA from the github repo, to avoid any side effects of
uncommitted code.

	We’ll deploy to production so that we can support it - see below.

Our development process

The process involved in how we work is fairly straight forward and we
expect you to follow this as well.

	We use Git Flow [https://github.com/nvie/gitflow]‘s convention with regard to branch names.

	All work requires a ticket with a unique number or name.

	Work happens in a feature branch [http://nvie.com/posts/a-successful-git-branching-model/]. Feature branches names are composed
of the ticket / issue number along with a one-line description of the issue.

	Write tests for the new features you are developing.

	Your schema changes are expected to be handled by a schema migration script.

	When work in a feature branch is ready for review then we create a
pull-request.

	All collaborators on the GitHub repository are notified of the pull-request
and will start the process of reviewing the changes.

	Any issues, concerns or changes raised or recommended are expected to be
attended to. Once done please notify the reviewers of the changes and
ask for the changes to be re-reviewed.

	Once all the changes are approved and one or more of the collaborators
has left a :+1: in the pull-request’s comments it can be merged into
the main branch and is ready for a deploy.

For your code to be ready for review we have the following expectations:

	It is to be pep8 [https://pypi.python.org/pypi/pep8] compliant and pyflakes [https://pypi.python.org/pypi/pyflakes] is not raising any issues.

	It is to have tests.

	The tests have to pass.

	There are no commented lines of code.

	There is adequate amount of documentation.

Example flow

$ virtualenv ve
$ source ve/bin/activate
(ve)$ git flow feature start issue-1-update-documentation
(ve)$ git flow feature publish issue-1-update-documentation
..// hack hack hack // ..
(ve)$ nosetests
.............
--
Ran 13 tests in 0.194s
OK
(ve)$ git push
(ve)$ hub pull-request -b develop -i 1
https://github.com/praekelt/some-repository/pulls/1
..// review, update, re-eview, update, re-review ... +1 // ..
(ve)$ git flow feature finish issue-1-update-documentation
..// changes merged to develop by git flow // ..
(ve)$ git push

Production Deployments

Our DevOps team are responsible for all production deployments. This enables us
to support the live sites and systems after hours, and ensure that
infrastructural requirements like backups and monitoring are standardised.

Please note that production deployments need to be booked with the DevOps team
by the appropriate Praekelt project manager, and that we deploy on Mondays
through Thursdays.

 Copyright 2013, Praekelt Foundation devs and individual contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Praekelt Ways of Working 1 documentation

Things you need to know when starting a project

Sometimes there’s a rush to get a project started. To spare yourself
future trouble here’s a checklist of things you need to have before
starting any work.

	You need to have been issued a purchase order.

	You need to have been given a Scope of Work describing the thing you
are to be building.

	You need to have agreed to the timelines, estimates and deliverables
described in the Scope of Work. If there are any ambiguities in any of
the wording they need to be resolved before you start.

	You need to have a clear picture of which stats need to be collected
for the project and how those are to be stored to enable the people
wanting access to those stats do the type of analysis they need to do.
This differs per project so make sure you take the time to do this properly.

 Copyright 2013, Praekelt Foundation devs and individual contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Praekelt Ways of Working 1 documentation

Index

 Copyright 2013, Praekelt Foundation devs and individual contributors.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/comment-close.png

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		Praekelt Ways of Working 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Praekelt Foundation devs and individual contributors.
 Created using Sphinx 1.3.1.

_static/up.png

